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Fermi—Dirac Statistics

Derivation and Consequences

S Chaturvedi and Shyamal Biswas

After a brief exposition of the history of the
Fermi—Dirac statistics, we show how this statis-
tics emerges as a possible statistics for a quantum
description of an assembly of identical and indis-
tinguishable particles. We then present the nec-
essary tools for computing thermodynamic prop-
erties of specific fermionic systems and highlight
the role it has played in our understanding of
physical phenomena ranging from transport prop-
erties of metals to those pertaining to stability of
stars.

1. Introduction

Fermi-Dirac statistics describes energy distribution in a
non-(or weakly) interacting assembly of identical parti-
cles now known as fermions. Fermions are particles with
1/2-integer spin, e.g., neutrinos, electrons, quarks, pro-
tons, neutrons, °Li, K atoms, etc., and obey the Pauli
exclusion principle [1] which decrees that no more than
two such particles can occupy the same quantum state.
It bears the names of Enrico Fermi [2] who derived it in
1926 and of Paul Dirac [3] who derived it independently
a little later in the same year. It was a very important
year in the history of quantum mechanics as well as that
of modern physics as it was a witness to the revolution-
ary transition from the old quantum theory to the new
quantum theory. That electron was a spin 1/2 parti-
cle was already proposed though not well understood
[4]. Nonetheless, the Pauli exclusion principle worked
extremely well. It satisfactorily explained the struc-
ture of the periodic table, the fine structure in atomic
spectra, anomalous Zeeman effect, Paschen—Back effect,
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Particles with 1/2-
integer spin such as
electrons, protons,
neutrons, SLi atoms
are called fermions.
They obey

Fermi—Dirac statistics.
In contrast, those with

integer spin such as

photons, mesons, "Li

atoms are called

bosons and they obey

Bose—Einstein
statistics.

etc. While by 1926 one had already learnt how to quan-
tize single-particle using the canonical commutation re-
lations between position and momentum (first quanti-
zation) and to derive the energy spectrum of specific
physical systems, the work of Fermi and Dirac laid the
foundations of what is now known as second quanti-
zation — quantum mechanics of many-particle systems,
where the system as a whole is required to respect a rule
such as the Pauli exclusion principle. Their treatment
of such systems in equilibrium at a finite temperature
showed that while in the limit of high temperatures the
results agree with those based on Maxwell-Boltzmann
statistics, in the degeneracy limit, i.e., limit of low tem-
peratures the results differed considerably and were in
agreement with the qualitative predictions of Nernst on
the ‘degeneracy’ of gases at low temperatures [5].

It should be mentioned, two years prior to the work of
Fermi and Dirac, a similar successful attempt was made
towards understanding ‘degeneracy’ of a gas of another
type of identical particles now called bosons, e.g., pho-
tons, gluons, 7% 1H, 4He, "Li, N, 190, ?3Na, H,0,
%2Cr, W% bosons, 8"Rb, Z bosons, Higgs bosons, etc.
This was done by Einstein [6] by examining the rami-
fications of Bose’s ideas [7] implicit in his derivation of
the Planck’s blackbody radiation law in the context of
a gas of N identical non-interacting particles in thermal
equilibrium. Spin of particles, other than that of elec-
trons, was of course, not known at that time [8]. The
theoretical connection between spin of identical parti-
cles and their statistics, Fermi-Dirac or Bose-Einstein,
came to be established much later —around 1940 — in the
form of the spin—statistics theorem [9]. Categorization
of atoms as either bosons or fermions started around this
time [10]. Later, in the late 1940s, at a more fundamen-
tal level, relativistic quantum field theory came to us as
a new description of a many-particle system involving
both fermions and bosons permitting interpretation of
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forces among fermions as exchange of bosons: exchange
of photon leads to Coulomb interaction between elec-
trons, exchange of Z boson leads to weak interaction
between electrons and neutrinos, exchange of pi meson
(7%} or gluons leads to strong interaction between pro-
tons and neutrons or among quarks [11]. It is curious
to note that a direct experimental evidence confirming
that atoms of integral spin obey Bose-FEinstein statistics
appeared relatively recently in the year 1995, and that
atoms of half integral spin obey Fermi-Dirac statistics,
even later in the year 1999 [12].

From the brief historical remarks presented above, it is
evident that Fermi-Dirac statistics has played an im-
portant role in the rise of the Pauli exclusion principle
from a phenomenological rule initially aimed at explain-
ing atomic spectra to a fundamental physical principle
rooted in quantum field theory. A more comprehensive
account of this journey covering all related philosophical
and scientific aspects can be found in [13]. Both Fermi—
Dirac and Bose-Einstein statistics brought into play a
new notion of purely quantum mechanical origin — the
notion of indistinguishablity which sets them apart from
the classical Maxwell-Boltzmann statistics. This being
the case, rather than tracing the detailed historical path
leading to the development of Fermi-Dirac statistics, we
will focus here on the finished product and present it in a
way that highlights Dirac’s general perspective on statis-
tics describing identical and indistinguishable particles
within the framework of quantum statistical mechan-
ics from which Fermi-Dirac statistics and also Bose—
Einstein statistics emerge as special cases. This being
done we then proceed to bring out the enormous role
Fermi—Dirac statistics has played in our understanding
of physical phenomena ranging from transport proper-
ties of metals to those of astrophysical importance.

Fermi-Dirac and
Bose—Einstein

statistics brought into
play a new notion of

purely quantum
mechanical origin —
the notion of
indistinguishablity.
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Occupation number
description consists in
grouping together the
states in the set

i) ®iy) @ .|, I, i,
e y=1,2,.., M in
which 1 occurs

n, times, 2 occurs n,
times and so on. The
occupation numbers
evidently

add up to N and the
total energy of the
system corresponding
to a given set of
occupation numbers is

M
given by Zi:1nigi .

2. Quantum Statistics Describing Identical and
Indistinguishable Particles

2.1 Identical Particles

Consider a system consisting of N kinematically iden-
tical non-interacting particles each of which can exist
in M energy states |i),7 = 1,--- , M corresponding to
energies €1,¢9,---€py. Let H denote the corresponding
single-particle Hamiltonian. The Hilbert space Har de-
scribing this composite system then consists of an N-fold
tensor product of the single-particle Hilbert space H:

Hy =HOH® - OH (1)

and is of dimension M”. The Hamiltonian for the N-
particle system will have the structure:

Hy = H(1) + H(2)--- + H(N) , (2)

where H(1) denotes H® I @ [--- @ I and so on. Let
us choose {|i),7=1,--- M} as a basis for each H; then
the set of MY states |i1) @ |ia) @+ - |in), i1, 02, - ,in =
1,2,--- , M serve as a basis for Hy. We can decompose
this set of M"Y states by grouping together states which
have the same number of 1’s, 2’s, ---, etc., regardless
of their location in the product. Each such group is
characterized by a composition of N, i.e., by a set of

occupation numbers n = (ny,ne, -+ ,nuy), adding up
to N. FElementary combinatorial considerations tell us
that the number of states f(ni,---,na) in each such

group is given by f(ni, -+ ,ny) = NV/ng! - ny! and
hence the canonical partition function for this system at
a temperature T is given by

1 N’ 1 " [
Z9 @) = Y o A, ()

!
Yn;=N

where © = xy,--- ,xym; 1, = exp(—e¢;/kgT). Since

f(ny, -+ ,ny) is a symmetric function of ny, -+, na,
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we rewrite (3) as
N!
(D
4N (X)) = ———— ma(x). 4
V@ =Y e W

Here X\ = ()\1,)\2,"' ,)\M), )\1 Z )\2 Z )\3 Z )\M
is a partition of N and my(z) denotes the monomial
symmetric function [14]

ma(w) =) aytayt e any ()

corresponding to the partition A. (These functions, one
for each partition A, like the Schur functions sy(x) to
be encountered a little later, constitute a basis in the
space of symmetric multivariate polynomials.) The sum
in (3) can be carried out using the multinomial theorem
to obtain

I (@) = (b)Y, (6)
which is the well-known expression for the canoni-
cal partition function for infinite (uncorrected Maxwell—
Boltzmann) statistics. That for the corrected Maxwell—
Boltzmann statistics is obtained by dividing Z]%) (x) by
NI

The MY states can also be viewed as the carrier space
for an M*"-dimensional representation of the permuta-
tion group Sy whose elements P have a natural action
on the basis states |i1) @ |i2) @ -+ - |in) :

Pliy) @ |ig) @ - - - |in)
= lip()) @ lipe)) @ -+ - lipa))- (M)

Further, the Hamiltonian Hy by construction commutes
with all elements of Sy — it is permutation symmetric.
The reducible representation of Sy obtained by its ac-
tion on the basis states can be decomposed into the ir-
reducible representations of Sy which are in one-to-one
correspondence with the partitions A of N. All features
of this decomposition are encapsulated in

Z3 (@) =) n(Wsa(x), (8)

A
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The permutation
group S, plays a
crucial role in defining
the notion of
indistinguishabilityin
the context of non-
relativistic quantum
mechanics of an
assembly of non-
interactingidentical
particles. F-D and
B-E statistics
correspond
respectively to the
one-dimensional
antisymmetricand
symmetricirreducible
representations of S, .

where n()) denotes the dimension of the irreducible rep-
resentation A of Sy and s, (x) denote the Schur functions
[14].

>\]‘+M—j)

%

det(z} )

det(x
S,\(SUh"‘ ;SUM) = (

1<i,j< M. (9)
2.2 Indistinguishabilty in the Permutation Group
Sense

The Hilbert space Hpp, describing identical and indis-
tinguishable particles is constructed out of Hy by (a)
admitting only those operators on Hy which are permu-
tation symmetric, i.e., those operators which, like Hy,
treat all the factors in the tensor product democratically,
and (b) identifying those states in Hy which have the
same expectation values for all permutation symmet-
ric operators. These assumptions, by the well-known
Schur’s lemma, imply that all states in Hy belonging to
an irreducible representation A of Sy count as one state
of thy.

2.3 Identical and Indistinguishable Particles

From the considerations given above, it is clear that par-
tition function for statistics describing identical and in-
distinguishable particles is obtained by setting n(A) = 1
in equation (8) [15]

Z3 (@) = salx). (10)

Different statistics describing identical and indistinguish-
able particles correspond to different restrictions on \’s
in this sum. Fermi and Bose statistics arise by restrict-
ing oneself to A = {1V} and A = {N} corresponding
respectively to the one-dimensional antisymmetric and
symmetric representations of the permutation group. As
noted earlier, particles with half-integer spin are found
to obey Fermi statistics and those with integer spin, the
Bose statistics. Other kinds of statistics like para-bose
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and para-fermi which correspond to other restrictions
on A have also been invoked in particle physics in the
context of quarks.

The essence of the notion of indistinguishablity as for-
mulated above has its origin in the work of Dirac [16]
who begins by examining the consequences of the com-
mutativity of the Hamiltonian Hy (taken to be time-
independent) with the elements of the permutation group
P from the point of view of the dynamical conservation
laws it gives rise to. The fact that [P, Hy] = 0 implies
that an eigenstate of P corresponding to some eigenvalue
evolves under Hy to a state with the same eigenvalue.
Though all the P’s commute with Hy, they do not nec-
essarily commute with each other. Dirac then goes on
to construct — out of the P’s a maximal set of commut-
ing operators — operators that commute with Hy as well
as with each other. This set of operators turns out to
be xr = > pec, P> k = 1,---m, where C1,Co, -+ ,Cp,
denote the conjugacy classes of Sy. The eigenvalues
of this set of operators can then be used to divide the
state space into mutually exclusive sectors each of which
evolves into itself under Hy.

Dirac then goes on to show in his inimitable style that
the number of such eigenvalue sets is precisely m, the
number of classes, which in turn is the same as the num-
ber of partitions of V. This set includes (a) one in which
all the eigenvalues are 1, and (b) one in which they take
values +1 depending on whether the x in question con-
sists of even or odd permutations. Within each sector
an eigenstate |x) corresponding to the eigenvalue set
appropriate to that sector, and the states f(P)|y) ob-
tained by applying all functions f(P) of P (assuming
that f(P)|x) # 0) would correspond to the same eigen-
value set and are hence physically indistinguishable from
each other and should be identified. To put it differ-
ently, the orbit of |x) under Sy counts as one state. For
a given eigenvalue set for the y’s, Dirac does say that

In Chapter IX of
his book, Dirac
explictly constructs
out of elements of
S, amaximal set
of mutually
commuting
operators which
commute with
Hamiltonian H,.
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Among all possible
statistics permitted by
the notion of
indistinguishability

in the permutation
group sense, F-D and
B-E statistics are the
only ones

for which the grand
canonical partition
function Z(X) has the
structure

z00= [, 2(x))
where z(X) = (1 + X)

for F-D statistics and

z(X) =1/(1 = X) for

B-—E statistics.

there would be a definite number of such physically in-
distinguishable states but stops short of giving any fur-
ther details. The analysis presented here completes this
detail.

2.4 Fermi—Dirac Statistics: Thermodynamics of
Fermions

The canonical partition function for Fermi statistics is
given by
FD
737 (@) = sin (@), (11)

which on reverting back to the occupation number de-
scription reads

FD i 7
23y = Y atayeay. (12)
Eni:]gzziZO,l

For the grand canonical partition function

20 ) = 3N ZE ), (13
N
we have
M
Z(FD) (l’) = Z(FD) (X) _ H(l + Xz)) X, = 6—5(61‘—#)_
=1
(14)

Here i denotes the chemical potential and 5 = 1/kgT.
All thermodynamic properties can be computed from
the knowledge of Z("P) or equivalently from the grand
potential QD)
1 1
QFD) — __log ZFP) — _Z N T og(1 f e,
5 52
(15)
Thus for the mean number 7; of particles occupying the
energy state e; we have
iQ(FD> — 1

De; ePlei—1) 17 (16)

n; =
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This is the celebrated Fermi—Dirac distribution function The —1in the
which Fermi derived in his 1926 paper, where he specif- denominator for
ically considered the case of harmonically bound parti- the expression for
cles, i.e., where the single particle energies ¢; were chosen 7i for B—E statstics
to correspond to those of a three-dimensional harmonic gives rise to the
This is to be contrasted with the corresponding formula Bose-Einstein
for the Bose case: condensation in
] bosonic systems.
i = eBle—u) _ 17 (17)

The two differ from each other only by the sign of 1
in the denominator and this seemingly minor difference
makes a huge difference in the thermodynamic proper-
ties of assemblies of bosons and fermions. In the limit
of large T this distinguishing feature, viz. +1 in the de-
nominator can be neglected and one is led to the result
appropriate to Maxwell-Boltzmann statistics.

The formulae above do not refer to spin of the fermions
explicitly. To accommodate it, for instance, in the case
of an assembly of electrons subject to a magnetic field,
let ;4 and ¢;; denote the single-particle energies parallel
and antiparallel to the magnetic field then (14) and (15)

&)

read
M
200 x) = [+ X+ Xy
i1
XZT — _ﬁ<€iT_H’>’ le :6_ﬁ<€il—p)‘ (18)
1 1
QI = ——log 2" = 3 Z (log(1 + e~ Olei=my)

+log(1 + e Pe=my) (19)

In the absence of external magnetic fields, €;1 = €;) = ¢
and the expression for the grand potential acquires a
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factor of 2
1

OFD)
g

2
log Z(FD) — 3 Zlog(l e Alammy

(20)
All thermodynamic quantities can be computed from the
grand potential once the single-particle energies specific
to the system under consideration are given. Thus for a
gas of electrons in a volume V', we have:

1. Average number of particles:

N=2) m. (21)

For a given N this equation is to be used to deter-
mine .

2. Average energy:

E=2) emi. (22)

3. Average energy per particle: U = E/N .

4. Equation of state:
2
PV = —QFD) — 3 > log(l—) (23)
where P denotes the pressure.

It proves convenient to rewrite (20) and (21) as

<FD>*—E Ooe €)lo — nfle
0 ﬂ/OdD()lg(l ©), (@1

N =2 /000 deD(e)m(e), (25)
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=1

075+

0.5+

025

with D(e) = > (e — ¢;) and

n(c) = ﬁ (26)
With D(e) interpreted as density of states, these for-
mulae provide smooth passage to situations where the
single-particle energy takes continuous values. As a func-
tion of ¢, as shown in Figure 1, (¢) has the property that
at T'= 0, it equals 1 for € < p and equals 0 for € > pu.
Fermi energy is defined as the value of ¢ beyond which
n(¢) vanishes, i.e., the energy er of the highest occupied
level. In view of this we find that at 7" = 0, the chemical
potential equals ep. At nonzero temperatures, pu is to be
computed from (25).

3. Applications

We now consider a few illustrative applications of Fermi—
Dirac statistics. Asis clear from the discussion above, to
compute the thermodynamic properties of the fermionic
systems all that one needs is the expression for the single-
particle energy and the expression for D(c), the density
of states. However, in a given situation, the integrals
that appear may become quite involved and one has to
resort to approximation methods valid in low or high
temperature regimes. In the applications listed below
some are discussed in sufficient detail while for the oth-
ers we only summarize the principal results.

Figure 1. Solid, dotted and
dashed lines represent
Fermi-Dirac distribution for
ideal homogeneous Fermi
gas for k,Tle.= 0, 0.1 and 2
respectively.
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3.1 Metals: Electron Gas Model

The behaviour of simple (monovalent) metals can be
adequately described by the electron gas model which
views metals as a collection of free electrons confined
to a three-dimensional box of volume V' in the presence
of a neutralizing positive background. Here, the single-
particle energies are modelled after those appropriate to
a quantum mechanical particle in a periodic box of side
length L:
2(1.2
— h |k |, k — %(Vl,yg,,yg); V; = O,:i:l,:i:2 .
(27)
The formula for D(¢) corresponding to these single-parti-
cle energies turns out to be

D) = (?)/ Ve (25)

c(k)

2m

Substituting these in (23) and (25), one can derive the
expression for the pressure P as a function of tempera-
ture and the number density N/V:

po Nyt

VI Rpz)

where z = e#/*87 ig the fugacity and f;(z), called the
Fermi function, is given by

(29)

s

[ 1 = o1 Z
M=y ), W X0 60

From these calculations one finds as T" — 0, the pres-
sure of the free Fermi gas, for a fixed number density,
approaches a nonzero constant (%6]:‘ (%) ) Ep — %

—\2/3
<67r2 (%) > in contrast to the Maxwell-Boltzmann

statistics where it tends to 0 [17]. This nonzero pressure
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is called the Pauli pressure which arises solely as a con-
sequence of Pauli exclusion principle. Bulk modulus of
a metal mostly is a result of Pauli pressure. Pauli pres-
sure also resists the gravitational collapse of a (lighter!)
white dwarf or a neutron star.

For the average energy per particle, a similar calculation
yields
 3kgT f52(2)
2 faplz)

From this expression it follows that in the low temper-
ature regime (kpl'/ep < 1), the specific heat per par-
ticle (C, = g—g|V,N) for this system is given by C, =
kggi(kfFT) + O(%)S [17] which is significantly differ-
ent from the classical result (3kg/2), and is compatible
with the Nernst’s heat theorem (hypothesis) [18] and
matches favourably with the experimental data ([19,
20]). This result confirmed the validity of the Fermi—
Dirac statistics over the Maxwell-Boltzmann statistics
in the low temperature regime. Further, this expres-
sion for the specific heat, unlike its classical counterpart,
also leads to a physically acceptable value for the Lorenz
number for a metal as L = £ = é(%f ~ 2.45 x 1078
watt-ohm/deg?, where K is the thermal conductivity
and o is the electrical conductivity [21].

(31)

3.2 Astrophysics: White Dwarfs

Historically, one of the first applications of Fermi-Dirac
distribution came from Fowler in the context of astro-
physics. In late 1926, he proposed that the relationship
among the density, energy and temperature of a white
dwarf star could be explained by viewing it as an ideal
nonrelativistic gas of electrons and nuclei which obey
the Fermi—Dirac statistics [22|. He also predicted the
ultimate fate of a white dwarf star, regarded as a Fermi
gas, that follows from considerations of the inward grav-
itational pressure due to heavier nuclei and the outward
Pauli pressure due to lighter electrons. This Fermi gas

Historically, one of
the first
applications of
Fermi-Dirac
distribution came
from Fowler in the
context of
astrophysics.
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Thomas—-Fermi
model in nuclear
physics which
nowadays is
commonly used as
an approximation
technique was
proposed as an
application of
Fermi-Dirac
statistics in 1927.

model was then used by Frenkel, Anderson and Stoner in
1928-1930 to calculate the relationship among the mass,
radius, and density of the white dwarf stars, assuming
them to be essentially homogeneous spheres of electron
gas. Soon after this, Chandrasekhar obtained a value of
critical mass in terms of solar mass (Mo) as

Me =~ 1.4Mo (32)

for the stability of the white dwarf star applying Fermi—
Dirac statistics to an ideal inhomogeneous gas of rela-
tivistic electrons [23]. Around this time, applying Fermi—
Dirac statistics (possibly unaware of the previous works
of Chandrasekhar and others), Landau obtained the
value of critical mass not only for the white dwarf stars
but also for the ‘neutron’ stars (even before the discov-
ery of neutron by Chadwick).

3.3 Nuclear Physics

Thomas-Fermi model in nuclear physics which nowa-
days is commonly used as an approximation technique
(even for Bose systems) was proposed as an application
of Fermi—Dirac statistics in 1927. Around 1934 Fermi
gas nuclear model was proposed by Majorana and Weiz-
sacker as a similar application for calculating the binding
energy of the nucleons in the nucleus.

3.4 Magnetism and Other Aspects of Solid State
Physics

In 1927, applying Fermi-Dirac statistics for the conduc-
tion electrons, Pauli explained weak temperature depen-
dence of the paramagnetic susceptibility

3 usn
Y = 2HBY 0B (33)
2 €

of metals exposed to a weak magnetic field (B = Bk)
[24]. This explanation was compatible (to a certain ex-
tent) with the existing experimental observations, and
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confirmed that, (conduction) electrons obey Fermi-Dirac
statistics, and that each electron behaves as a tiny (spin)
magnet with two-fold degeneracy (in absence of mag-
netic field). Such an application modernized the the-
ory of metals from Drude-Lorentz classical model to
Sommerfeld—Bloch semiclassical model [17] around 1929.
Soon after this, a diamagnetic and oscillatory effect on
the magnetization of conduction electrons was added by
Landau to the paramagnetic contribution obtained by
Pauli to explain experimental observations on magneti-
zation of metals particularly in strong magnetic fields
and this opened the way for the theory of quantum
Hall effect. In 1931, electronic band structure came
as a very important step towards understanding metal-
lic, semiconductivity and insulator behaviour of a crys-
talline solid body. Around this time, as a consequence
of Fermi—Dirac statistics, existence of ‘holes’ was pro-
posed by Heisenberg and that of positrons by Dirac.
Like electrons and positrons, ‘holes’ also obey Fermi—
Dirac statistics. This way Fermi-Dirac statistics found
an area of enormous applicability in the theory of metals
and semiconductors [21].

4. Later Developments

Spin-statistics theorem was proposed by Fierz and Pauli
around 1940 to connect spin of particles to either Bose—
Einstein statistics or Fermi—Dirac statistics [9]. This
theorem led to the extension and generalization of Dirac’s
canonical quantization technique for photons to open
quantum field theories for system of identical particles
around late 1940s [11]. Subsequently, quantum hydro-
dynamic theory (for Bose liquid), quantum electrody-
namics, Landau’s theory of a Fermi liquid, BCS theory
on superconductivity, Abrikosov flux lattice, Anderson
localization, standard model, asymptotically free gauge
theory, etc., came to us as a direct or indirect appli-
cation of Fermi-Dirac statistics and revolutionized our
theoretical understanding of physics. From the 1950s,

Spin-statistics
theorem was
proposed by Fierz
and Pauli around

1940 to connect spin
of particles to either

Bose—Einstein
statistics or Fermi—
Dirac statistics.
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Fermi—Dirac statistics

has played a major
role in the
development of
quantum field theory
for many-particle
systems which has
now become the
basic language for
describing
condensed matter
and particle physics.

Fermi-Dirac statistics has played a major role in the

development of quantum field theory for many-particle

systems which has now become the basic language for

describing condensed matter and particle physics. This

statistics has found numerous applications in statisti-

cal mechanics, low temperature physics, nuclear physics,

semiconductor physics, low-dimensional physics, plasma

physics, astrophysics, supersymmetric theory, grand uni-

fied theory, string theory, carbon nanotube physics, meso-
scopic physics, ultra-cold atom physics, graphene physics,
topological insulator physics, ete. [25].
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